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ABSTRACT
Students using online learning environments need to effectively
self-regulate their learning. However, with an absence of teacher-
provided structure, students often resort to less effective, passive
learning strategies versus constructive ones. We consider the po-
tential benefits of interventions that promote retrieval practice –
retrieving learned content from memory – which is an effective
strategy for learning and retention. The goal is to nudge students
towards completing short, formative quizzes when they are likely
to succeed on those assessments. Towards this goal, we developed
a machine-learning model using data from 32,685 students who
used an online mathematics platform over an entire school year
to prospectively predict scores on three-item assessments (N =
210,020) from interaction patterns up to 9 minutes before the as-
sessment as well as Item Response Theory (IRT) estimates of stu-
dent ability and quiz difficulty. These models achieved a student-
independent correlation of 0.55 between predicted and actual scores
on the assessments and outperformed IRT-only predictions (r =
0.34). Model performance was largely independent of the length
of the analyzed window preceding a quiz. We discuss potential
for future applications of the models to trigger dynamic interven-
tions that aim to encourage students to engage with formative
assessments rather than more passive learning strategies.
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1 INTRODUCTION
Imagine the behavior of students who procrastinate studying for an
exam scheduled for the next day. In a burst of late-night studying,
they attempt to watch all of the online lecture videos that explain
the concepts covered on the exam. The videos seem to make sense
as they watch them. However, when they attempt a practice quiz,
they realize that the lecture content went in one ear and out the
other. After struggling through the quiz and getting a low score,
they feel frustrated and anxious about their ability to perform well
on their upcoming exam. Their motivation declines. If they can’t
figure out this little quiz, what is the point of putting in more time
studying for what is going to be an even harder exam?

In a traditional classroom setting, teachers can structure how
students engage with the course material, such as creating interac-
tive rather than passive activities (see the Interactive, Constructive,
Active, Passive (ICAP) framework in [17]). However, when left to
self-regulate their learning, students often resort to fewer or less
effective learning strategies such as passive viewing [18], verbatim
notetaking or highlighting [30, 42, 51]. The problem is exacerbated
in the context of online learning environments, such as Massive
Open Online Courses (MOOCs) and Khan Academy, which are
increasingly common, especially in the age of a global pandemic.
In these platforms, students are often provided with structured
content in the form of ordered lessons. However, student interac-
tion time and learning strategies are largely unregulated. Students
must allocate their time between the various learning activities
such as watching videos and taking assessments. Although viewing
well-designed instructional videos can offer feelings of engagement,
and competence [2, 50], in reality, very little actual learning occurs,
especially for difficult conceptual content [36].

In contrast, research has demonstrated the benefits of retrieval
practice on long-term retention (the so-called testing effect) and
end-of-course outcomes [3, 29, 38, 54, 55]. During retrieval practice,
students practice retrieving information from memory, often in the
form of a multiple-choice quiz, flashcards, or free-response prompts.
Compared to passive strategies such as re-reading, retrieval practice
forces students to evaluate weak points in their knowledge when
they cannot recall the correct answer (which allows them to then
focus on these areas when studying) and promotes deeper memory
encoding [40]. Unfortunately, when given a choice, students prefer

https://doi.org/10.1145/3448139.3448151
https://doi.org/10.1145/3448139.3448151


LAK21, April 12–16, 2021, Irvine, CA, USA Jensen et al.

more passive strategies such as re-reading or taking notes, instead
of engaging in the more effortful retrieval practice [30, 42]. Even
students aware of the benefits of retrieval practice feel more confi-
dent in their knowledge after passive activities such as re-reading
[55].

It is clear that students need to develop skills to effectively regu-
late their learning [27, 50, 63, 67]. One approach is to help students
develop self-regulatory skills to become more effective learners.
For example, the MetaTutor project [7, 8] proposes a framework to
detect, trace, model, and foster self-regulated learning habits. This
work uses an animated tutor as an external regulatory agent, pro-
viding feedback and scaffolding to help the student help themselves.
Similar frameworks have been suggested for other computerized
learning environments such as Bettys Brain [52] and for blended
learning environments [5].

An alternative approach, which we explore here, is to provide
nudges [60] or suggestions for students about how they should
be using their time. Specifically, we seek to take an initial step
towards encouraging students to engage in retrieval practice in
the form of short, formative assessments. These nudges should be
delivered at appropriate times so that they are not disruptive or
harmful. Nudging too frequently would be annoying and disruptive,
whereas nudging at inappropriate times might even be detrimental.
In particular, it is not likely to be beneficial to suggest students
engage with assessments for which they have little likelihood of
success, and this can negatively impact engagement and discourage
students from learning [3]. An ill-timed assessment might also
reduce motivation to engage in future assessments.

But what if we can predict when a student is likely to succeed on
an assessment? In this case, a well-timed nudge to successfully com-
plete an assessment can provide positive feedback, which should
positively increase motivation to use these assessments in the fu-
ture [37]. In addition to the aforementioned cognitive benefits on
learning [59, 62, 64], research suggests that this form of interpolated
testing can improve engagement by reducing attentional lapses and
improving motivation [58]. This is not to propose a gate-keeping
mechanism for taking a quiz based on an anticipated low score;
there are a variety of factors influencing quiz performance and
students should be allowed to attempt a quiz when it aligns with
their goals and motivations.

The purpose of this paper is to explore the possibility of prospec-
tively predicting student success on a short, formative assessment
as an initial but critical step in implementing intelligent, well-timed
nudges. Information on potential student success on an assessment
can be obtained from a variety of sources. Previous work uses stu-
dent modeling approaches, including Knowledge Tracing [9, 66],
Performance Factor Analysis [48], and Item-Response Theory (IRT)
[16], which identifies student mastery of specific concepts or skills
based on their previous responses to problems/items. As we elabo-
rate below, this approach requires frequent assessments to inform
the underlying learner models, and such data might not be available
when such assessments can be infrequent or even non-existent as
in the case of unstructured online learning environments. They
also require parameterized models of domain knowledge and as-
sessment items, which might not be available in MOOCs and other
online learning platforms.

Alternatively, we explore whether student actions immediately
preceding an assessment can predict their subsequent performance.
Based on the ICAP framework and retrieval practice (see above), we
expect that participation in more active and constructive activities
(such as taking quizzes) is associated with better performance on
following assessments than more passive strategies. This is in line
with [4], where the authors found that completing assessments
and using expert-labeled active participation were most associated
with end-of-course success. Additionally, [31] found students who
completed relatively more interactive activities performed better
at the end of a course than students that watched more videos
or read more pages. Accordingly, we investigate whether student
performance on low-stakes assessments in an online learning plat-
form can be prospectively predicted based on their prior interaction
patterns with the platform. We also examine if accuracy can be im-
proved by combining interaction data with model-based estimates
(i.e., IRT).

We trained our models using a large, diverse data set of real-
world interaction data from students (N = 32,685) of varying demo-
graphics, knowledge backgrounds, and classroom experiences who
engaged in an online math learning platform for an entire school
year. If we can successfully predict student performance on a quiz
based on preceding actions, we can then develop real-time nudges
to balance student motivation, engagement, and learning.

1.1 Related Work
To keep scope manageable, we focus on studies conducted in online
or hybrid learning environments. Previous research on predicting
student performance has focused on outcomes at a variety of levels.
Most broadly, some researchers have attempted to predict drop-out
from MOOCs [20, 31] or a summative measure of course perfor-
mance such as course grade or final exam score [4, 6, 24, 35, 53, 57]
(for a review, see [39]). Our current work is not focused at this level
of prediction, instead aiming to provide more specific, actionable
feedback throughout a course.

In contrast, other lines of research have predicted student per-
formance on individual assessment items [12, 15, 43–46, 56], pro-
gramming problems [25, 33], or entire assessments [21, 24]. For
example, in [24], the authors predicted scores on intermediate as-
sessments using personalized linear regression models [23] and
detailed features from interaction logs. Similar to [53], they found
that viewing course materials, in addition to cumulative GPA and
current course grade, was the most important indicator of student
success. As discussed above, we choose to focus our predictions
on intermediate scores such as these (compared to a whole-course
level) so that we can give meaningful feedback to students at timely
intervals over an entire course.

Previous approaches have used a variety of features and methods
to predict student success. One active line of research uses Bayesian
Knowledge Tracing [19] and related methods [21] to model student
mastery of specific concepts and skills based on performance on
individual problems [9, 43–46, 66]. Unfortunately, this strategy is
not easily applicable outside of a problem-solving environment
where student performance on problems and other assessment
items are sparse. In addition, this approach requires domain experts
to develop knowledge models specific to the platform or developing
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a latent knowledge model [32]; both options might not be available
for online learning platforms.

Other research has predicted student performance using features
external to the immediate learning environment. These include stu-
dent grades [24], prior performance within the course [15, 25],
historical course and instructor information [24], and student de-
mographics [24]. For example, perhaps unsurprisingly, [25] found
one of the strongest positive predictors of success on programming
problems was prior performance. Additionally, in [15] the authors
predicted student performance on individual assessment items by
incorporating an estimated measure of student current knowledge.
While these external factors may influence student performance,
they do not take into account the student’s learning behavior, which
we aim to target with timely feedback. Further, using certain fea-
tures such as demographics can encode systematic biases that may
impact model predictions in a manner that affects marginalized
groups [22, 68].

Finally, a growing body of work has focused on predicting stu-
dent performance using information from the immediate learning
environment. Some work has found success using simple counts
of activities on the learning platform [4, 31, 53, 57] or engineered
interaction patterns and sequences [4, 12, 15, 24, 25, 33]. For exam-
ple, in [53] the authors used stepwise multiple regression to predict
total test scores in a course using activity frequencies. They found
the main predictor of success was total page hits, which indicates
the overall level of interaction with course content. In [31], the
authors used a causal inference system to analyze course dropout
and end-of-course scores using activity frequencies. They found
that students that completed relatively more interactive activities
performed better than students that watched more videos or read
more pages. While these activity features are similar to those used
in this work, we choose to focus on context-specific actions leading
up to a quiz rather than an aggregate over an entire term. Addi-
tionally, [12] extracted generic video-watching behaviors to predict
whether students would answer correctly on the first attempt of a
problem related to the video. They found that interactions with the
video (e.g., pausing, rewinding) increases the chance of success on
the problem. However, this work only considers the actions in the
context of specific video-problem pairings; we choose to examine
a broader context of student activity leading up to the start of an
assessment.

Approaches using data from the student’s immediate learning
environment are particularly promising as they can be developed
to be system-agnostic and used in different contexts. For example,
[4] analyzed end-of-course scores using three different system-
independent interaction patterns: between agents (students, teach-
ers, content), frequency of resource use, and active versus passive
interaction. Most importantly, they found that participating in as-
sessments and using active participation were most associated with
end-of-course success. More generally, [57] was able to predict
grade sequences using unusual spikes in activity during a course.

Two studies in particular are most similar to the current work.
First, [15] predicted performance on items using measures of prior
performance on specific concepts, current knowledge, item diffi-
culty level, and engineered activity features. While this method
combines both information about the current learning session as

well as external factors to predict student performance, the fea-
tures used rely on expert-constructed learning units and difficulty
ratings of easy or difficult. In this work, our models generally ap-
proximate student ability through their past performance on prior
quizzes rather than tracking their mastery of individual concepts.
Our results were obtained with a psychometric IRT model of item
difficulty and estimated student ability. Additionally, [25] used gen-
eral activity features to predict student completion of programming
problems. While the features used (such as interacting with the
platform) are similar to those used here, the authors focused on pre-
dicting student success after the start of the problem. In this work,
we aim to prospectively predict student success by considering
features before the start of an assessment.

1.2 Contribution & Research Questions
Our overarching goal is to develop models of student performance
on embedded quizzes to deliver timely nudges to encourage ef-
fective learning strategies. This paper takes an initial step in this
direction by providing a proof-of-concept that we can model stu-
dent performance from their immediate learning context. To do this,
we use log data to prospectively predict performance on 210,020
quiz attempts from 32,685 students. We go beyond previous work
by combining general activity features leading up to the start of a
quiz with IRT factors such as estimated student ability and quiz dif-
ficulty that do not rely on domain expert knowledge. Additionally,
we consider models using different combinations of these features.
If successful, this approach can be used in an intervention that selec-
tively encourages students to attempt assessments when they are
likely to be successful. We address five specific research questions
(RQ).

RQ1. To what extent can we prospectively predict student suc-
cess on a short assessment (quiz) using only information from the
immediate learning context? Work such as [25, 33] has predicted
student success using activity after students have begun to solve an
individual item. Instead, we aim to understand a student’s ability
to succeed before they even start the assessment. To answer this
question, we build models using activity features collected from the
3-minute window (we experimented with other window lengths)
leading up to the start of a quiz. Our approach does not require
a pre-determined model for each individual student, but relies on
activity patterns alone, as these are more easily available in online
learning platforms.

RQ2. Within the activity patterns used in RQ1, what is the influ-
ence of prior retrieval practice on subsequent quiz performance?
To investigate this question, we trained separate models that either
considered only quiz-related activity or non-quiz activity. We found
that models using only quiz-related activity from previous quizzes
predict student performance better than those using non-quiz ac-
tivity (e.g., video viewing), but there is information content in both
types of features.

RQ3. How accurately can we model student performance using
information independent of the immediate learning session? We
answer this question by comparing the activity patterns with IRT
measures of student ability and quiz difficulty. We achieved the best
predictive performance by combining the two approaches.
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RQ4. How much context is needed to predict student perfor-
mance? We comparatively evaluated longer context windows lead-
ing up to the start of a quiz but found no difference in predictive
performance as we consider actions farther from the start of a quiz.

RQ5. What features are most influential in predicting student
performance? We analyze the relative importance of the individ-
ual features from the machine-learned models as well as more
interpretable coefficients from a linear regression. Proxies for quiz
difficulty and student ability were among the most important in
addition to activities related to previous retrieval practice and the
discussion board.

2 METHOD
The data used in this study was collected through the Algebra
Nation platform, described below. Previous work [26, 28, 41] has
investigated interaction patterns and their effects on students using
the platform, but these use data collected over a different school
year and for a different modelling problem than is considered here.

2.1 Algebra Nation
Algebra Nation is a large-scale online math learning platform de-
veloped by Study Edge, an educational software and tutoring com-
pany. Students can access Algebra Nation through the website
(https://www.algebranation.com/) or a mobile app. Over 150,000
students use Algebra Nation each semester in Algebra 1, Geometry,
and Algebra 2. Each domain uses the same interaction framework
and range of activities (discussed below). Content for each domain
is aligned with Florida state education standards. In this paper, we
focus on data from Algebra 1, which is organized into 10 sections
which each cover 6 to 14 specific topics. A suggested topic sequence
is provided to students; however, students are free to interact with
Algebra Nation in whatever way they choose or based on what
their teachers require.

Algebra Nation provides short video lectures for each topic
within a section. Each lesson is recorded by multiple human tutors,
where each tutor provides a unique perspective on the topic along
with different levels of expressiveness and technical detail. Students
can choose any of the tutors and can switch tutors at any time.

The Algebra Nation community interacts through a Discussion
Wall (separately for each math subject). Students post requests for
help, which may be answered by other students or study experts
(teachers working with Algebra Nation). Students who provide
helpful guidance are awarded karma points by study experts. Karma
rankings are shown in a leaderboard and monthly prizes are given
to students with the highest karma.

Algebra Nation also offers a Test Yourself! Practice Tool (TYS),
which delivers a randomly selected set of 10 items on the selected
section and covers several video topics. These are selected from a
pool of items aligned with state standards and reviewed by content
experts and teachers for content validity evidence. For internal
structure validity evidence, the 2PL IRT model fit well to the item
data, and multiple psychometric methods were used to obtain un-
biased item parameters for the state level population relevant to
our data [65]. Additionally, multiple psychometric analysis internal
to our research project found evidence for criterion-related valid-
ity for the Test Yourself items. As one example, responses on Test

Yourself items from a previous year of statewide data were corre-
lated to scores on the end-of-year state standardized Algebra test.
Out of 531 items, 526 showed positive correlations, with an overall
mean point biserial correlation of .34 and standard deviation of 0.12.
Students answer items through open text boxes or multiple-choice
options, which are then automatically graded (Figure 1a). Students
may review their performance on the items, view solution videos,
and revisit items and topic videos (Figure 1b).

Algebra Nation recently introduced additional Check Your Under-
standing (CYU) quizzes. These are short quizzes (three fixed items
each) on a specific video topic. Items are specific to the content
covered in each video and do not overlap with the Test Yourself
item pool. These quizzes were designed for students to practice
what they just learned in the videos and to obtain formative feed-
back to help guide their learning session. It is distinct from the
more elaborated Test Yourself practice assessment, which covers
an entire section rather than a specific topic. In this work, we focus
on predicting performance on these CYU quizzes. The CYU item
content was developed and examined by content experts in the
same manner as Test Yourself items, and the 2PL fit well to the
data of all but five items, which were removed from the analysis.
In addition, the IRT ability scores from each of the CYU tests in
Algebra Nation in the Spring of 2020 were positively correlated
with prior year state standardized mathematics scores (noting that
Algebra standardized test scores were unavailable for Spring 2020
due to COVID-19 testing cancellations).

Each quiz contains three items, which are often related to real-
world situations and are presented in the form of fill-in-the-blank,
interpreting a graph, or describing why a statement is true. Al-
though each quiz contains three items, each item can contain multi-
ple sub-items which may rely on the answers of the previous parts.
Quizzes are graded out of three, one point per item; if a student
answers one sub-part of a item incorrectly, then the entire item
is marked as incorrect by the platform. Students are free to move
between items during the quiz. When they submit their final re-
sponses, they are shown their overall score as well as an option to
view feedback on each item. Students can then review the correct
answer and solution steps for each item, re-watch the topic video
explaining the concepts of the quiz, or attempt the quiz again.

2.2 Activity Features
We used features that did not rely on domain-specific content (e.g.,
watching a video lecture on factoring polynomials), quiz items (e.g.,
solving a system of equations), or specific student-generated text
(e.g., a request for help on the discussion wall). Our activity fea-
tures represent counts of 22 actions aggregated across the 3-minute
window immediately leading up to the start of a quiz (we vary
the window size later). Figure 2 illustrates the instance-building
procedure. The activity features can be divided into four subcate-
gories: watching videos, taking assessments, interacting with the
discussion wall, and Algebra Nation onboarding. The assessment
features might include both previous Check Your Understanding or
Test Yourself assessments as part of retrieval practice. Recall that
all features are computed prior to each quiz, so they reflect actions
on earlier assessments. However, we only consider a student’s first

https://www.algebranation.com/
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Figure 1: (a) Open-ended Check Your Understanding item
(b) Feedback after submitting a Check Your Understanding
quiz.

attempt of each quiz, thereby excluding cases where students im-
mediately retake a quiz for a higher grade, which is particularly
easy to do as the correct answers were available following the first
attempt.

Table 1 contains a full list of activity features and average oc-
currences within each window. The first set of activities relates to
watching lecture videos. Specifically, once a student starts playing
a video, they can navigate within the video (pause, seek, resume),
turn on captions, and exit the video environment. Video lengths
vary depending on the selected tutor; videos providing a shorter
review range in length from 8 to 20 minutes, while videos giving
an in-depth discussion of the topic range in length from 16 to 29
minutes. The next set of activities relates to taking assessments.
Students can answer or return to individual items, finish an as-
sessment, and load or unload the general assessment environment.
Once the results of the assessment are displayed, students have

the option to review the answers to individual items (whether they
were correct or incorrect) as well as watch videos for item solutions
and the general topic of the assessment. Students can also open
the discussion wall, load additional wall posts, search for previous
posts, or post their own item or response. If a student posts a help-
ful response, they are awarded karma points. Finally, students can
watch biographical videos about the expert tutors.

In general, these features are very sparse, where students only
complete a few activities within the 3-minute window. The most
frequent activities on average were answering a quiz item or review-
ing an incorrect answer on a quiz. For some actions, particularly
video viewing, the database sometimes recorded too many actions
within the 3-minute window (e.g., pausing a video hundreds of
times). Although these outliers were rare, we accounted for this
by clamping each feature to a 20-count maximum per one-minute
interval similar to the procedure in [26].

2.3 IRT Features (Student Ability and Quiz
Difficulty)

In addition to the action counts, which represent the immediate
learning session, we also computed student ability and overall
quiz difficulty using an IRT framework. The two-parameter logis-
tic model (2PL [10]) was chosen due to the binary nature of the
Algebra Nation item responses and the relative parsimony of the
model compared to many other IRT models for binary data. The
2PL allowed us to evaluate and utilize two core measurement fea-
tures of items, difficulty and discrimination, without introducing
additional parameters that can lead to both technical and interpreta-
tional challenges, as happens, for example, when freely estimating
a lower asymptote parameter [34, 47]. In addition, our data mining
approach to locating unbiased item parameters was tractable within
the 2PL framework. Details on how difficulty and discrimination
were calculated can be found in [65].

Using this framework, section-specific student ability (θ ) was
estimated based on the most recent quiz performance in the sec-
tion, quiz item difficulty (β), and quiz item discrimination (α ). We
use fixed-parameter calibration, as commonly done in computer
adaptive testing [61], by fixing the item parameters to the values
located in [65] while estimating a person-level latent trait parame-
ter with expected-a-posterior estimation (EAP). We used EAP due
to its speed in estimating unidimensional traits due to the non-
iterative nature of the estimation procedure [13]. The estimation is

Figure 2: Example of aggregating action counts in a 3-minute window preceding a quiz.
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Table 1: Distribution of activity features for 3-minute windows leading up to starting a quiz. (N = 210,190). Feature importance
for the Random Forest and Linear Regression combined models are also reported after averaging across 5 cross-validation
folds (standard deviations across folds were near zero).

Activity Description Mean SD Median Random Forest
Importance

Linear Regression
Coefficient

Start watching video 0.10 0.45 0 0.00 -0.01
Pause video 0.30 1.37 0 0.00 0.02
Resume a paused video 0.27 0.35 0 0.00 -0.04
Video has been playing uninterrupted for 30 seconds 1.04 2.21 0 0.00 -0.07
Seek within a video 1.38 6.68 0 0.01 -0.03
Toggle video caption on/off 0.00 0.11 0 0.00 0.00
Reach end of video 0.14 0.38 0 0.00 -0.03
Start a previous TYS or CYU assessment 0.01 0.13 0 0.00 0.01
Answer a previous item 1.46 1.86 1 0.05 -0.21
Go back to a previous item 0.06 0.36 0 0.01 0.07
Finish an assessment 0.93 0.97 1 0.02 0.11
Review a correctly answered item 0.01 0.17 0 0.00 0.02
Review an incorrectly answered item 1.10 1.94 0 0.29 0.08
Review solution video for a specific item 0.00 0.05 0 0.00 0.00
Review topic video for a specific quiz 0.00 0.02 0 0.00 0.00
Leave the assessment environment 0.67 0.88 1 0.01 -0.05
Navigate to the discussion board 0.81 0.88 1 0.14 -0.13
Load more entries on the discussion board 0.00 0.05 0 0.00 0.00
Make a post on the discussion board 0.00 0.01 0 0.00 0.00
Search on the discussion board 0.00 0.01 0 0.00 -0.01
Watch bio video for a tutor 0.00 0.08 0 0.00 -0.01
Karma awarded 0.00 0.01 0 0.00 0.00
Quiz Difficulty 0.22 -0.27
Student Ability 0.22 0.22

completed with themirt R package [14]. For initial student ability es-
timates (where students do not have prior quiz data), student scores
from the prior-year Florida State Assessment (FSA) standardized
test were used. To represent general student ability, we calculated
the average of student ability across all 10 sections. Given the way
the item parameters were scaled (see [65]), the average student abil-
ity across the sections can be thought of as an average location in
the standard unit normal distribution across sections. Both domain
specific ability and general student ability were updated after the
completion of each quiz. The average student ability using these
estimates was 0.07 (IQR = 1.19). To represent quiz difficulty, we
averaged the established difficulty scores (β) of the three quiz items.
The average difficulty score was -0.07 (IQR = 0.91). The distribution
of these estimates can be found in Figure 3

2.4 Dataset
We considered assessments taken over the 2018-2019 school year
by 48,181 students in the state of Florida studying Algebra 1 and
ranging from grades 6 to 12. We define a quiz as a unique set of
individual items where the order of the items does not matter. In
total, our data set includes 724,910 completed attempts of 1,065
unique quizzes. On average, each student attempted 15.05 quizzes
(SD = 24.28) over the school year and the average quiz score was
1.59 (SD = 1.13) out of a possible score of 3.

Figure 3: Distributions for (a) end-of-course estimated stu-
dent ability (N = 32,685 students) and (b) quiz difficulty (N =
79 unique quizzes).
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Since students can review the correct answers and retake each
quiz for a better score, we focus for the rest of the paper on the
first attempt of each student on a particular quiz. Of the total quiz
attempts, 416,239 (57%) were the first attempt. Finally, we only
considered quizzes that were associated with complete IRT data
(discussed above), which produced a final data set of 210,190 quizzes.
In the analyzed data set, each student had an average of 6.42 first
attempts (SD = 8.79) with a first attempt score of 1.15/3 (SD = 1.07).

2.5 Machine Learning Procedures
In addition to the data cleaning noted above, we also removed any
instances where no actions preceded the start of a quiz. This could
occur, for instance, if a student remains logged into the platform
overnight. As a result of this cleaning process, our final dataset
consisted of 210,020 quiz attempts.

For the prediction task, we chose to use regression rather than
classification since the data are not nominal categories. We trained
a Random Forest regression model to predict a student’s quiz score
(ranging from 0 to 3). We trained these models using scikit-learn
[49] and 5-fold student-level nested cross-validation; for each fold,
the instances for each student were included in either the train-
ing or testing set. This practice reduces overfitting and promotes
generalizability to new students. Additionally, we tuned our hyper-
parameters using a grid search; within each of the five iterations,
the training set was split into three folds for validation. For each
of these inner folds, a model was fit and scored using every com-
bination of hyperparameters and tested on the held-out fold. The
scores for each parameter combination across each validation fold
were averaged, and the hyperparameters that resulted in the lowest
mean squared error were preserved. A model was then fit on the
full training set using these best parameters, and predictions were
made on the test fold. These predictions were then pooled over the
5 test folds before accuracy metrics were computed. We considered
100, 300, and 500 estimators and a maximum tree depth of 6, 8, 10,
15, or none.

3 RESULTS
We evaluated the performance of each model using Pearson corre-
lations (r) between actual and predicted quiz scores pooled over
the five folds. The results are summarized in Table 2

3.1 Baseline Models
We compared our model performance against two random base-
lines. We first shuffled the true quiz scores (N = 210,020) across
the entire dataset, which breaks the dependencies with the original
features. We then trained a model using this shuffled data, which
yielded a Pearson r = 0.00. Additionally, we shuffled the true quiz
scores within students, removing any students with fewer than 5
quiz attempts (N = 171,105) as any fewer would not yield a mean-
ingful baseline. A model trained on this shuffled data yielded a
Pearson r = 0.24, which suggests it is learning an approximation of
student ability as some students have a higher distribution of scores.
Finally, we generated predicted scores using the 2PL framework,
which considers estimated student ability, item difficulty, and item
discrimination. These predicted scores yielded a correlation of 0.16
with the observed quiz scores.

3.2 Activity Feature Models
Our first question was whether we could prospectively predict quiz
scores using only activity features. We initially trained a predic-
tive model using the count of 22 activity features (N = 210,020,
described in Table 1) in the 3 minutes leading up to the start of a
quiz. This model achieved a Pearson r = 0.42. Next, we examined
the influence of previous quiz activity on the current quiz (RQ2).
This question is particularly interesting because some of the most
frequent actions leading up to the quiz are related to taking another
assessment. Since taking assessments is a form of retrieval practice
(the behavior we want to promote), we anticipated that previous
assessment activity in the same session would be associated with
improved performance on the current quiz. To test this question,
we first trained a model using the 13 activity features in Table 1 that
were unrelated to taking assessments, including watching videos,
interacting with the discussion wall, and general Algebra Nation
onboarding activities. This model achieved an r of 0.33. Next, a
model trained on the 9 features in Table 1 related to prior quiz
activity (N = 210,020) yielded a Pearson r of 0.41. These results
highlight the importance of previous retrieval practice on current
assessment performance. It is important to emphasize that our data
set only uses a student’s first attempt at a quiz. Therefore, these
results are not from students retaking a quiz for a higher grade; that
is, activity from an entirely different quiz is a powerful predictor of
future quiz performance.

3.3 IRT Models
The previous models showed some success in predicting student
quiz scores only using simple activity features. These features are
highly variable and change between student sessions on the Algebra
Nation platform. This leads to the question, howmuch of a student’s
performance is consistent between learning sessions (RQ3)? We
used the estimates of IRT features (quiz difficulty and student ability,
N = 210,020) from the 2PL framework in our Random Forest model,
which achieved a Pearson r of 0.34. This model differs from the
baseline which predicts scores directly from the 2PL framework
because it takes into account data from other students in the training
set, rather than just the current estimates of student ability and
quiz difficulty.

3.4 Combined Model
Finally, we investigated whether combining information from these
different sources could improve our predictive performance. Accord-
ingly, we trained a predictive model using the 22 activity features
as well as quiz difficulty and student ability (24 features in all). We
found that the combined feature model achieved the highest accu-
racy with a Pearson r = 0.53 (N = 210,020). This approach shows
the promise of using both session-specific information as well as
information about overall student ability and quiz difficulty, which
do not depend on the particular learning session. The distribution
of predicted and actual scores is in Figure 4

3.5 Different Session Lengths
We additionally considered how our predictive models are influ-
enced by different session lengths (RQ4). Specifically, our question
was whether we would be able to predict student quiz performance
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Figure 4: Distribution of true and predicted labels from the
combined model (N=210,020)

Table 2: Performance comparison between the 3-minute
models and random baseline (N = 210,020 except for the sec-
ond baseline, N = 171,105).

Features Pearson r
Baseline (shuffle across students) 0.00
Baseline (shuffle within students) 0.24
Baseline (IRT-generated scores) 0.16
All Activity Features 0.42
Non-quiz Activities 0.33
Only Prior Quiz Activities 0.41
IRT Features 0.34
Combined Features 0.53

using a longer session window. To test this question, we constructed
different data sets that counted activity features in 5, 7, and 9-minute
windows preceding the start of a quiz. As discussed above, we re-
moved outliers by clipping each action to a 20-count maximum per
one-minute interval. This allows for a higher maximum activity
count for longer time windows.

The data sets constructed from longer session windows con-
tained fewer instances than the original 3-minute data set because
there are fewer sessions that contain activity over the longer length
of time. Since there were different numbers of instances in each
data set, we sampled each data set to contain the same number
of instances across window sizes (N = 188,601). We trained the
combined feature model on the various session windows and found
no major difference as we increase the size of the session win-
dow; longer windows saw slightly lower scores, with the 9-minute
window scoring 0.01 worse than the original model.

3.6 Feature Importance
We investigated the relative importance of individual features from
the combined 3-minute window model (RQ5). For the Random
Forest model, importance values are normalized to sum to 1, where
higher values indicatemore important features. Thismodel captures
nonlinearity and interactivity among features and is more difficult
to interpret. Therefore for interpretability, we also used a cross-
validated linear regression model predicting quiz scores using the
24 features in the combined model, which yielded a correlation

of 0.36. We report standardized coefficients, where larger absolute
values indicate a larger effect.

The two models generally aligned in terms of the most important
features. The most important feature of the Random Forest model
was reviewing an incorrect item on a previous assessment, with an
importance of 0.29. In the linear regression model, this feature had
a coefficient of 0.08, which means that reviewing incorrect items on
previous quizzes was associated with higher scores on the current
quiz. This is in line with previous research which shows retrieval
practice promotes knowledge acquisition which can be transferred
to new contexts [54]. Quiz difficulty and student ability were the
next most important features in the Random Forest model, with an
importance of 0.22. In the linear regression, quiz difficulty had a
coefficient of -0.27, which is in line with the idea that more difficult
quizzes are associated with lower scores (especially since we are
considering first attempts here). Student ability had a coefficient
of 0.22, which shows that higher performance on other quizzes
in the platform is associated with higher first-attempt scores on
subsequent quizzes; neither of these patterns are surprising. Load-
ing the discussion board had an importance of 0.14 in the Random
Forest model and a standardized linear coefficient of -0.13, which
indicates that more visits to the discussion board is associated with
lower quiz scores. This may indicate that students are visiting the
discussion board simply to look up answers rather than thinking
critically about solving the problem. Finally, answering a previous
assessment item had an importance of 0.05 in the Random Forest
model and a coefficient of -0.21, which indicates an interesting
trend that answering more items on previous quizzes is associated
with lower scores on the current quiz. The remaining features had
significantly smaller importance in both models.

4 DISCUSSION
As an increased amount of learning is happening online, it is im-
portant that we promote effective learning strategies within these
environments since students are poor at self-regulating their learn-
ing when left to their own devices [18]. Accordingly, our long-term
goal is to nudge students towards retrieval practice (taking quizzes)
when such a strategy would be beneficial in terms of learning, mo-
tivation, and engagement. As a step in this direction, we focused on
developing amodel that prospectively predicts student performance
on short, formative quizzes in Algebra Nation. In the remainder
of this section, we discuss our main findings, applications of our
results, limitations, and future work.

4.1 Main Findings
Our overall finding is that our models were quite accurate (student-
level cross-validated correlations of 0.53 or 28% of the variance) in
prospectively modeling performance on an upcoming assessment
using interaction patterns and past performance alone. Turning to
our research questions, our first question addressed was how the
immediate learning session can predict a student’s performance on
a quiz. We found that models that simply summed counts of generic
activity features leading up to a quiz achieved a correlation of 0.42
in predicting quiz performance, easily outperforming two chance
baselines. We then investigated the influence of prior quiz activity
on the current quiz performance. We anticipated that participating
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in more active learning strategies (e.g., retrieval practice) compared
to passive learning strategies (watching videos) would be associated
with better performance on assessments. Models trained on non-
quiz features and only quiz features achieved correlations of 0.33
and 0.41, respectively, confirming our hypothesis.

Next, we considered how IRT features, proxies of student ability
and quiz difficulty, can predict quiz performance. A model trained
on these features achieved a correlation of 0.34, which is impressive
since it does not take into account any activity that is unique to the
particular learning session. By combining these features with the
activity features, our model achieved a correlation of 0.53, which is
the best of any of the conditions we tested.

We then asked whether considering longer session windows
would improve our predictive performance since they are using
more information about student learning activity. In almost all
cases, we found that increasing the session window had no notable
effect on model performance.

Finally, we investigated the relative importance of the features
in our best-performing model, which combined all features over a
3-minute context window. Unsurprisingly, we found that the IRT
features of quiz difficulty and student ability were negatively and
positively associated with quiz score, respectively. An important
new finding was that reviewing incorrect items was an important
positive predictor of quiz score. Additionally, loading the discus-
sion board was a negative predictor of quiz score. Since reviewing
mistakes is a more active learning strategy than reading a discus-
sion board (potentially to look up answers), these results align
with previous work in self-regulated learning. The one important
feature that is perhaps unintuitive is that answering items on a
previous quiz was negatively associated with quiz score. This may
be a result of cognitive fatigue; since we are considering only a
3-minute window before the start of a quiz, answering more items
in the preceding window may deplete cognitive resources. But this
speculative finding warrants more follow-up research.

4.2 Applications
The key application of this work is to integrate our model into the
Algebra Nation platform so that it may be used as part of a larger
intervention to promote retrieval practice as a study strategy. Such
a model would accumulate data over overlapping activity windows
and provide a real-time measure of prospective quiz performance.
When the predicted score is sufficiently high, the Algebra Nation
platform could suggest that students practice their skills by attempt-
ing a short quiz. Not only will this promote the use of retrieval
practice as an effective learning strategy, but students will be able to
validate their mastery of the course content and progress through
the course material more efficiently.

We must be careful in how these recommendations are presented
to students given that the model is not perfect and is not likely to
ever be. For instance, if the system suggests that a student is ready
to attempt a quiz and they do not perform well, this can have nega-
tive effects on their future motivation and trust in the intervention
system. Thus, interventions should be designed to ‘fail-soft’ – there
should be no negative impact on the student if the intervention
is incorrectly delivered. For example, quiz recommendations can
be based on the model’s confidence and students should have an

opportunity to opt-out of a quiz if they do not feel they are ready to
attempt it. There is also the potential for using reinforcement learn-
ing techniques to learn an optimal policy for when to deliver a quiz.
Finally, predicted quiz performance should not be used to dissuade
a student from attempting a quiz; not only can retrieval practice be
beneficial regardless of a student’s score, but withholding quizzes
can lead to a lack of feedback and impair student motivation.

Researchers considering applications of this work should inter-
pret our findings in the context of the content, internal structure,
and criterion-related validity evidence underlying the quiz item
data. While continued development and validity studies are always
needed, the assessment items in this work were supported by three
core areas of validity evidence as defined by the Standards for Edu-
cational and Psychological Testing [1]. It is uncertain if the studied
method for predicting quiz performance would uphold if used with
measurement data lacking such validity evidence.

4.3 Limitations and Future Work
Like all research, ours has limitations. One such limitation is that
we considered windows of activity immediately leading up to the
start of a quiz. As such, we do not have information on how the
model would perform without this orienting point. Future work
should consider predicting student performance from the beginning
of a learning session.

Our models were also relatively simple, consisting of only action
counts and using Random Forest regressors. This was done as a
first step towards this problem, but future work should examine
whether performance can be improved by incorporating sequences
of actions, latent action features, and deep learning methods. Simi-
larly, though a strength of this work was the use of content-free
features, this also presents a limitation. Such a feature set operates
at a higher level of abstraction, which may aid generalizability at
the cost of accuracy. In future work, we will examine the tradeoff be-
tween generalizability and accuracy by contrasting the content-free
features used here with content-specific features such as identifiers
for videos and quizzes.

In this work, we examined within one online learning platform,
specifically aimed at mathematics. It is unclear at this time whether
this work will generalize to additional domains, such as language
learning or history. In future work, we hope to examine how this
approach can be used in other domains and perhaps even other
platforms (such as in [11]).

5 CONCLUDING REMARKS
In the classroom, teachers can support student learning through bal-
ancing passive (listening to a lecture or video) and active (working
in groups, retrieval practice) learning strategies. In an online learn-
ing environment, students receive little to no guidance or feedback
on how they should be spending their time. Timely interventions
have the potential to help students navigate online learning envi-
ronments more efficiently by encouraging use of effective learning
strategies. In this work, we investigated whether we could predict
student performance with sufficient accuracy to support such an
approach. We did this by developing a predictive model of student
performance on short, formative assessments in an online math-
ematics learning platform. We found that this model was most
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successful when using both student activity in the immediate con-
text as well as information on overall item difficulty and previous
performance of the student on other algebra tests and quizzes. The
models’ overall performance was moderately high in that it ex-
plained 28% of the variance in subsequent quiz performance. Future
work can investigate how suggestions based on these predictions
can impact student behavior and learning outcomes.
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