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ABSTRACT
Teachers, like everyone else, need objective reliable feedback in
order to improve their effectiveness. However, developing a system
for automated teacher feedback entails many decisions regarding
data collection procedures, automated analysis, and presentation
of feedback for reflection. We address the latter two questions
by comparing two different machine learning approaches to au-
tomatically model seven features of teacher discourse (e.g., use of
questions, elaborated evaluations). We compared a traditional open-
vocabulary approach using n-grams and Random Forest classifiers
with a state-of-the-art deep transfer learning approach for natural
language processing (BERT). We found a tradeoff between data
quantity and accuracy, where deep models had an advantage on
larger datasets, but not for smaller datasets, particularly for vari-
ables with low incidence rates. We also compared the models based
on the level of feedback granularity: utterance-level (e.g., whether
an utterance is a question or a statement), class session-level propor-
tions by averaging across utterances (e.g., question incidence score
of 48%), and session-level ordinal feedback based on pre-determined
thresholds (e.g., question asking score is medium [vs. low or high])
and found that BERT generally provided more accurate feedback at
all levels of granularity. Thus, BERT appears to be the most viable
approach to providing automatic feedback on teacher discourse
provided there is sufficient data to fine tune the model.
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1 INTRODUCTION
Teachers, like anyone, need feedback in order to improve their ef-
fectiveness in the classroom [6, 20, 26, 68]. Since they teach almost
daily, teachers have plenty of opportunities to practice and refine
these skills. However, isolated practice is not enough; achieving
expertise might require deliberate practice, which often takes place
under the guidance of a coach [28]. Such a coach would design train-
ing tasks at an appropriate level of difficulty and provide feedback
and guidance to steer teachers towards continuous improvement
[24, 26, 27].

Unfortunately, current professional development (PD) oppor-
tunities are a far cry from this form of deliberate practice. One
issue is that conference-style PDs, large events with lectures on
a wide range of topics, are largely ineffective [7, 11, 30, 31, 74]
since they do not provide the individual support teachers need to
apply the knowledge to their own classrooms. Another method
of PD involves classroom observation, where peers or supervisors
give feedback, ideally based on validated evaluation protocols and
rubrics. Unfortunately, these methods are usually evaluative rather
than formative and prohibitively time consuming to implement on
a frequent basis, which is what teachers need to improve [4].

This gap in PD leaves an exciting opportunity for AI-driven
learning analytics to empower teachers to guide their own growth.
Automated approaches can provide teachers with feedback specific
to their own practice without requiring cost-prohibitive human
observation. Teachers can use the analytics and supporting tools
to reflect on their practice, set goals, and track progress, either
individually or with a peer or a coach. And because the feedback
is computed automatically, it can be more objective and reliable
than human judgments which might be affected by human error
and biases.

Accordingly, we focus on the development of an automatic sys-
tem that provides teachers with objective feedback on the quality
of their discourse (or teacher talk) in authentic classrooms. This
entails several design considerations. First, the system should be
able to record data of sufficient quality for automated analysis (see
[12, 21, 57]). Some factors that may influence data collection are the
measured variables (which influence the type of data to collect), the
difficulty or expense of collecting data (due to costly or intrusive
sensors), security and privacy concerns, and autonomy of teachers
to record their own data.

The next design consideration pertains to the algorithms for
automatically analyzing the recorded data. While previous work
has primarily used engineered features and supervised traditional
classifiers to analyze teacher discourse (see discussion below), re-
cent improvements in state-of-the-art natural language processing
techniques (such as word embeddings and transformers [14, 46] )
warrant investigation of how these deep learningmethods can be ap-
plied to the analysis of teacher discourse. These newer methods also
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require much more training data than the traditional approaches,
which may be prohibitive in some applications.

Finally, insights from the analyzed data should be presented to
the teacher in a manner that makes the resulting analytics action-
able, for example, enabling teachers to reflect on their practice when
preparing for future lessons. There is currently little consensus on
how this information should be presented to teachers. For example,
[57] presents an orchestration graph to teachers, which gives a
detailed account of their class activity over the entire class session.
Alternatively, [41] presents teachers with an overall score in each
teaching outcome for a given class session, which gives teachers a
more high-level understanding of their teaching for a given lesson.

Having addressed the first design consideration in previous work
[21, 41], we now turn to the latter two considerations by compar-
ing two methods for modeling teacher discourse. First, we con-
sider a traditional open-vocabulary approach, which uses n-grams
and Random Forest classifiers to provide automated feedback, and
which has yielded the most accurate modeling results for this prob-
lem to date [41]. We compare this to a state-of-the-art natural
language processing approach (BERT) that uses transfer learning
(on large domain-independent corpora) and fine-tuning (on our
domain-specific data). We first consider how these models compare
for different sized datasets and then analyze them at different levels
of feedback granularity.

1.1 Related Work
We reviewwork on automated approaches for analyzing teacher dis-
course quality and design considerations when presenting teachers
with feedback.

1.1.1 Automated Analysis of Teacher Discourse. We focus on auto-
mated analysis of teacher discourse, primarily through the use of
recorded audio. Although recording classroom sessions for teacher
assessment is not new [2, 16, 32], the transition to automatically
analyzing the recordings has been relatively recent. Some lines of
research have used classroom audio to identify general classroom
activities (e.g., time spent in lecturing vs. discussion) using turn-
taking dynamics [78] or by analyzing utterance timing, language,
and acoustic features [23]. Other work has focused on identify-
ing the amount of teacher versus student talk (as in the startup
teachfx.com). More recent work has focused on identifying general
discourse features such as the frequency of question asking and the
types of questions [10, 19, 54, 69] and instructional talk (compared
to classroom management) [69]. Additionally, a few studies have
begun to focus on modeling specific discourse feature that extend
beyond questions, such as restating student ideas [41, 71, 72].

Traditional methods of automated teacher discourse analysis
generally rely on one of two methods. The first, most common,
method uses feature engineering based on automatic speech recog-
nition (ASR) transcripts. It involves computing high-level features,
such as linguistic features that span word, sentence, and discourse
levels, and using them as inputs to standard supervised classifiers
that can detect the focal discourse features in a generalizable man-
ner [43] . The second method uses an open-vocabulary approach,
which uses the words (and short phrases comprised of two or three

words) themselves as features rather than more abstract representa-
tions [19, 70]. With the exception of [71, 72] the studies mentioned
above all employ one of these approaches.

Recent advances in natural language processing have introduced
a potential new method of automated teacher analysis - deep trans-
fer learning. Deep transfer learning methods leverage the massive
amounts of available online text data and the power of artificial
neural networks with multiple hidden layers to achieve state of
the art performance on a range of natural language processing
(NLP) tasks, including text classification, the task considered in this
study. Specifically, the introduction of the transformer architecture
[75] in 2017 sparked a wave of deep transfer learning models that
have advanced the state of the art in NLP. Rather than using purely
supervised learning (above two approaches), transfer (machine)
learning takes a model trained on one dataset/task and adapts it for
another [55]. This entails two steps: pre-training and fine-tuning.
During pre-training, the transformer uses large amounts (e.g., gi-
gabytes) of text to learn the contextual meaning of words using
domain-independent tasks. The trained model serves as the starting
point for subsequent fine-tuning where it is then augmented with
an output layer specific to the current task and tuned (update the
parameters) using small amounts of domain-specific data. Recently,
[71, 72] have used deep learning methods to detect specific dia-
logic strategies in mathematics classrooms. However, these studies
used human-transcribed (rather than automatically transcribed)
utterances, so it is unclear how these models can address ASR er-
rors, which will inevitably occur. These studies also did not ensure
teacher-independent training folds, so overfitting is also a concern.

1.1.2 Presenting Feedback on Teaching. Teacher feedback systems
generally serve one of two main purposes: (1) providing informa-
tion on student learning (e.g., identifying at-risk students, real-time
class orchestration); and (2) providing information on teaching ped-
agogy and effectiveness (e.g., improving professional development)
[17, 52]. Most systems are deployed in hybrid or virtual learning
environments [17] and take advantage of extensive log data in the
form of interactions with course materials, social interactions, as-
sessment results, and time spent engaged with the platform [77].
For teachers in particular, the most common data recorded generally
measures student time on platform and engagement with discus-
sion boards [65]. There is a growing field of multimodal learning
analytics which seeks to collect and analyze data in a more tradi-
tional face-to-face classroom setting. For example, [57] uses five
different sensors to identify types of classroom activities and later
displays an overview of the class session for the teacher to view.

There is also considerable variation in how analytics are pre-
sented to teachers. Some systems aim to provide real-time feedback
that teachers can immediately act upon during a class session [50].
For systems related to student learning, analytics often centers on
information like student engagement [5] or if a student needs imme-
diate assistance [3, 38]. Research focused on teacher pedagogy has
used virtual simulation technology like Augmented Reality/Virtual
Reality to allow practice before a live class [8, 47, 48]. Additional
work has used synchronous feedback, often from peers or supervi-
sors, as a form of coaching [39, 62]. Other platforms show feedback
after a class session in the form of trends in various metrics over
time, such as the EdSight project [1], which aims to promote teacher
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reflection by providing feedback based on student surveys. How-
ever, this example and others often rely on self-reported perceptions
of the lesson rather than objective feedback [57].

There are very few studies comparing the effectiveness of feed-
back design choices. In particular, it is important to consider the
granularity of presented information and intended insights. In [76]
the authors introduce a process model for teacher feedback which
entails the following steps: awareness, reflection, sensemaking, and
impact. For example, if a teacher does not understand the relative
effectiveness of different classroom activities, providing them with
a detailed breakdown of their class time spent on these activities
will not give them insight for how to improve their teaching. Feed-
back is perceived as more useful when it contains more complete
data in the form of more metrics and more visualizations [77]. How-
ever, this approach poses a risk because automated feedback is not
always accurate and there is a chance of presenting misleading in-
formation. Extremely fine-grained feedback is also potentially risky
because teachers often have difficulty using analytics to identify
next steps for improving their practice [52, 64]. This is in line with
the case study in [49], where teachers reported a desire of having
interpretations along with raw data.

1.2 Contribution and Research Questions
We expand previous work by comparing open-vocabulary (previous
work) and deep transfer learning methods (current study) for auto-
matic teacher discourse classification from recorded teacher audio
in authentic classrooms. Our data includes 16,977 automatically
transcribed teacher utterances, expert-coded for seven discourse
features such as asking questions, providing elaborated feedback,
and specifying learning goals. For the standard approach, we train
Random Forest (RF) models using an open-vocabulary approach
focusing on n-grams [41]. For the deep transfer learning approach,
we use state of the art natural language processing techniques by
fine-tuning an existing Bidirectional Encoder Representations from
Transformers (BERT [22]) model.

Because data collection resources vary, some applications will
need to choose automated models that can provide accurate results
with limited data. We then pose Research Question 1 (RQ1): What is
the data-accuracy tradeoff of standard vs. deep learning approaches?
We address this question by sampling different quantities of our
training data and comparing the two approaches as a function of
data quantity.

Beyond availability of data, feedback analytics may be presented
at different levels of granularity depending on the application and
on the accuracy of the underlying models. Accordingly, we ana-
lyze our results at three levels of granularity. First, we investigate
how these two methods compare for classification of individual
utterances. This level of feedback is the most fine-grained analy-
sis available for teachers and entails tagging individual utterances
with discourse labels and comparing them to human-codes (ground-
truth labels). Next, we compute class-session-level proportions for
each discourse variable by aggregating across utterances and cor-
relating the computer-predicted with human coded proportions.
This level of feedback provides an aggregated overview on the in-
cidence of each discourse variable and is at an intermediate level
of granularity. Finally, we discretize the session-level proportions

into ordinal categories (low, medium, and high) based on percentile
cutoffs from the entire corpus. This level of feedback gives teachers
an understanding of their performance relative to their peers and
is at the coarsest level of granularity.

Whereas utterance-level feedback requires a high degree of ac-
curacy because the feedback is resolved at the level of individual
utterances, the intermediate session-level proportional feedback can
accommodate a modicum of prediction errors because it capitalizes
on the power of aggregation to eliminate noise. The ordinal-level
feedback takes this a step further by not providing any numeric
feedback, instead focusing on relative performance and should be
even more tolerant to errors. Thus, for our second research ques-
tion, (RQ2) we ask how the two methods compare with respect to
these three levels of granularity?

2 METHOD
2.1 Teacher Talk Data
We used data from a prior study, which is detailed in [41], and only
report aspects germane to the present study.

We recruited 16 English Language Arts (ELA) teachers from
three suburban school districts in Pennsylvania. These teachers
were trained to independently record their own classroom talk. Each
teacher recorded at least four sessions of two different classes. From
these, we identified a total of 127 recordings (out of 142 original
recordings) that were usable for automated analysis.

We automatically segmented and transcribed each recording
using the IBM Watson speech recognizer [61], which achieved an
average word error rate of 0.28. Of the total 35,142 utterances, we
randomly selected 200 sequential utterances from each recording to
be coded by raters trained and supervised by ELA content experts.
The final dataset included 16,977 coded utterances, with an average
reliability of 0.81 (Gwet’s AC [35]).

The dataset includes codes for seven teacher discourse variables,
which are drawn from the literature on teaching effectiveness, stu-
dent engagement, and achievement. Specifically, we focus on dia-
logic discourse, which emphasizes taking students’ ideas seriously
[29] and increasing opportunities for deeper cognition and en-
gagement [44, 53, 59]. Based on this framework, we distinguished
between questions and statements and also coded questions based
on whether they were authentic (open-ended) questions with no
pre-specified response (see also [42, 51]). Additionally, we included
discourse variables inspired by Shernoff [66, 67] and Grossman [34],
which include goal specificity [29, 66], use of ELA-specific terms
[25, 36], cognitive level [13, 33, 58, 73], and elaborated feedback.
Finally, we distinguished instructional talk from other talk such as
classroom management.

Descriptions, examples, and incidences of the discourse variables
are in Table 1. Note that these categories are not mutually exclusive;
for example, Authentic Questions are a specific type of Questions,
so the percentages do not add up to 100. Although some of the
selected discourse variables have low prevalence rates in the dataset,
they were selected based on their documented or hypothesized
influence on student achievement (e.g., [53]) and low incidence is
not to be equated to low impact. The low incidence also presents an
important challenge for automated methods which often struggle to
learn with unbalanced datasets [40], resulting in directly modeling
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Table 1: Description of key teacher discourse variables ordered from highest to lowest prevalence.

Discourse Variable Definition Prevalence Positive Example
Instructional Talk Focuses on the lesson and learning goals rather

than on other topics, such as classroom
management or procedural talk.

81% Let’s think about the tone of this poem.

Questions Requests for information. 31% Do you have a pencil?
Goal Specified Extent to which the teacher explains the process

and end goals of a particular activity.
9% Your writing partner should give you three

overall comments, before editing supporting
details.

ELA Terms The use of discipline-specific terms in teacher
talk.

9% Ensure that you include a topic sentence in
each one of your paragraphs.

Elaborated
Evaluation

Expression of judgment or correctness of a
student’s utterance with explicit guidance for
student learning and thinking.

6% That’s right. You’re dying with each breath,
and this is what the poet tries to bring to the
consciousness of the beloved.

Authentic
Questions

Open-ended question for which the teacher does
not have a pre-scripted answer.

5% What was your reaction to the end of the
story?

High Cognitive
Level

Emphasizes analysis (e.g., compare, interpret,
synthesize, etc.) rather than reports or recitation
of facts (e.g., define, recall, identify)

4% How were their reactions to the accident
different?

Figure 1: Overview of the automated analysis and feedback generation procedure.

the data at the proportion level in lieu of utterance-level modeling
[43] .

2.2 Machine Learning Procedures
We adopted a supervised classification approach to predict the
presence or absence of the discourse variables in each utterance.
In particular, we compared two supervised classifiers: Random
Forest Classifier (RF) and deep transfer learning using Bidirectional
Encoder Representations from Transformers (BERT). Both RF and
BERT output a prediction from 0 to 1 that an utterance reflects
a given discourse variable, which was taken as the starting point
for subsequent aggregation. The general approach is illustrated in
Figure 1

2.2.1 Random Forest Classifier. We derived features for the Ran-
dom Forest classifier using a bag of n-grams approach, which com-
putes counts of words and phrases from the automatically tran-
scribed utterances. We used unigrams (words), bigrams and tri-
grams (two- and three-word phrases) for our bag of n-gram features.
Additionally, we filtered bigrams and trigrams using a pointwise

mutual information [18] of 2, to ensure that meaningful n-grams
(“topic sentence”) were preserved, and not simply frequent words
that occur together (“and then”). We also filtered the data to only in-
clude n-grams that occur with a minimum frequency in the corpus
(we experimented with values of 1%, 2%, and 3%). We then trained
Random Forest classifiers to predict the presence of the discourse
variables in each utterance using the n-gram features described
above. Separate binary classifiers were trained for each discourse
variable (i.e., each model learns to predict the presence of only one
of the variables, for example, whether an utterance is classified as
an authentic question [1] or not [0]). We used the scikit-learn [56]
library’s implementation of the Random Forest Classifier with 100
estimators (the default).

2.2.2 BERT.. We used transfer learning to fine-tune BERT models
to predict the presence of the discourse variables in each utter-
ance. This entails starting with a BERT model pre-trained on large
amounts of unlabeled data and fine-tuning it on our dataset of
transcribed utterances and corresponding labels. Unlike the bag of
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n-grams approach used for the Random Forest models, BERT pro-
cesses the automatically transcribed utterances using WordPiece
tokenization [63]. Here, an utterance is first split into a sequence
of words, or parts of words. Each unique word or word piece is
then converted to an integer according to the model’s pre-specified
vocabulary, and the sequence of integers is used as input to the
model. As with the Random Forest models, a separate model was
trained for each discourse variable. We started with the transform-
ers [79] library’s implementation of the BertForSequenceClassifica-
tion model and the BertTokenizer and fine-tuned the BERT model
for two epochs using a batch size of 32.

2.2.3 Cross Validation and Majority Sampling. We used random
teacher-level nested 8-fold cross validation for both classifiers. This
means that all the utterances for a given teacher were either in-
cluded in the training set or the testing set, but never in both. This
approach promotes generalizability to new teachers because it en-
sures a model is never trained and evaluated on utterances from the
same teacher. Importantly, we used identical cross validation folds
for the RF and BERT models to ensure that differences in perfor-
mance are not an artifact of the folds used. Due to the imbalance of
the discourse variables in our data, with several discourse variables
having very low base rates, we used the imblearn [45] library to
undersample the majority class during training of the RF models;
distributions of the test set were unchanged.

3 RESULTS
3.1 (RQ1) Comparing Models Across Different

Dataset Sizes
To investigate the tradeoff between data and model accuracy (RQ1),
we randomly sampled 25%, 50%, and 75% of the utterances from
the full dataset (16,977 utterances). We repeated the experiment for
10 iterations. Sampling was done without replacement within an
iteration, but utterances could be repeated across iterations. We
trained the RF and BERT models (7 discourse variables × 2 clas-
sifiers × 10 iterations) on the sampled data using the 8-fold cross
validation procedure described above. We used the same sampled
datasets and cross validation folds for equitable comparison across
the two classifiers. We focused on utterance-level accuracy for this
analysis since the other accuracy metrics are derived from these
utterance-level predictions. We used the area under the receiver
operating characteristic curve (AUROC) as our evaluation metric,
which compares true positive and false positive rates across differ-
ent classification thresholds. An AUROC of .5 represents chance
performance.

Figure 2 shows the mean AUROC and 95% confidence interval
across the 10 iterations for each of the sampling rates (25%, 50%, 75%
and 100% [no sampling]). We used a bootstrap method to statisti-
cally compare AUROC values for the two models for each discourse
variable and each iteration. This analysis was performed using the
pROC package [60] in R with 2,000 bootstrap permutations. For
each discourse variable, we adjusted the resulting p-values across
the 10 iterations using a false discovery rate correction [9]. Sam-
pling rates where one of the models performed significantly better
(FDR corrected ps < .05) on the discourse variable in 7 or more of

the 10 iterations are marked with an asterisk on the x-axis in Figure
2

Results varied by sampling rate. At the 25% sampling rate, BERT
outperformed RF for Instructional Talk and ELA Terms, while RF
outperformed BERT for Authentic Questions. There was no clear
best model for the remaining four discourse variables. At the 50%
sampling rate, BERT outperformed RF on all discourse variables
except Authentic Questions, where RF had a significant advantage,
and High Cognitive Level, for which there was no significant dif-
ference. Interestingly, the two discourse variables for which BERT
did not outperform RF at either the 25% or 50% sampling rate (Au-
thentic Questions and High Cognitive Level) had the lowest base
rates of all variables examined (.05 and .04, respectively), which
indicates that when using smaller amounts of data, RF may be better
a better model for these variables. To this point, the BERT models’
accuracy was at chance level (AUROC of 0.5) for the 25% sampling
rate for Authenticity, whereas RF was above chance. At the 75% and
100% sampling rates, BERT significantly outperformed RF on all
discourse variables except Authentic Questions, where there was
no clear difference between the two models.

3.2 (RQ2) Comparing Models Across Different
Levels of Granularity

Next, we compared the two models on the full dataset at the three
levels of granularity – utterance-level, session-level proportions,
and session-level ordinal categories (See Introduction).

3.2.1 Utterance-level results. Mean AUROC values for each dis-
course variable across the 10 iterations are reported in Table 2,
along with 95% confidence intervals. We also used the bootstrap
method to compare the AUROC values and adjusted the resulting p-
values with a false discovery rate correction, as described in 2.4. We
report the number of iterations with statistically significant (FDR
corrected ps < .05) differences in Table 2. We found that BERT signif-
icantly outperformed RF for all 10 iterations on five of the discourse
variables: Instructional Talk, Questions, Goal Specified, ELA Terms,
and Elaborated Evaluation. It performed significantly better than RF
for 9 iterations for High Cognitive Level. For authentic questions,
BERT only outperformed RF for 6 of the iterations. There were no
iterations where RF significantly outperformed BERT. Overall, the
results strongly favor BERT vs. RF on the full dataset.

3.2.2 Session-level Proportion Results. We next compared the per-
formance of RF and BERT models at the class session level by
averaging the utterance-level ground-truth human codes and the
RF/BERT predictions to the session level (N = 127). We then com-
puted the Pearson correlation between the human- and computer-
proportions. For each iteration, we used the Meng, Rosenthal, and
Rubin’s z test [37] for overlapping correlations to determine if there
were significant differences among the two models. We again ap-
plied an FDR correction [9] to the resulting p-values to account for
multiple testing across the 10 iterations (Table 3). BERT yielded sig-
nificantly higher session-level correlations than RF for Instructional
Talk, Goal Specified, and ELA Terms (all 10 iterations), Questions
and Elaborated Evaluation (9 out of 10 iterations). Interestingly,
BERT was only better than Authentic Questions for three iterations
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Table 2: Utterance-level results for BERT and RF models, reported as mean AUROC across iterations. We also report the
number of iterations where the difference in AUROC of the two models was statistically significant.

Discourse Variable BERT Random Forest # Significant (out of 10)
Instructional Talk 0.828 [0.827-0.830] 0.762 [0.761-0.763] 10
Questions 0.830 [0.825-0.834] 0.762 [0.761-0.764] 10
Goal Specified 0.878 [0.875-0.881] 0.826 [0.824-0.828] 10
ELA Terms 0.895 [0.891-0.899] 0.763 [0.762-0.764] 10
Elaborated Evaluation 0.861 [0.858-0.863] 0.814 [0.812-0.816] 10
Authentic Questions 0.725 [0.711-0.739] 0.705 [0.701-0.710] 6
High Cognitive Level 0.868 [0.863-0.872] 0.850 [0.847-0.852] 9
Mean 0.841 0.783

Table 3: Class session-level results for BERT and RF models, reported as mean Pearson r across iterations. We also report the
number of iterations where the difference in correlations of the two models is statistically significant.

Discourse Variable BERT Random Forest # Significant (out of 10)
Instructional Talk 0.545 [0.521-0.569] 0.262 [0.247-0.276] 10
Questions 0.694 [0.666-0.722] 0.529 [0.520-0.538] 9
Goal Specified 0.626 [0.614-0.639] 0.445 [0.434-0.456] 10
ELA Terms 0.695 [0.677-0.714] 0.292 [0.276-0.307] 10
Elaborated Evaluation 0.465 [0.444-0.487] 0.306 [0.295-0.317] 9
Authentic Questions 0.350 [0.249-0.452] 0.207 [0.170-0.244] 3
High Cognitive Level 0.526 [0.507-0.546] 0.438 [0.429-0.446] 0
Mean .557 .354

and there were no significant differences for the other seven itera-
tions. Finally, the difference in correlations were not significant for
any iterations of High Cognitive Level. Whereas there was no statis-
tical advantage to using BERT over RF on these two low-prevalence
variables, the magnitude of the correlations was higher for BERT
for these two variables. Overall, the small utterance-level advantage
of BERT over RF in AUROCs (mean of .841 vs. .783 across all seven
variables) was compounded (mean correlation of .557 vs. 354) when
utterances were aggregated to the session level.

3.2.3 Session-level Ordinal Results. We lastly compared the models
after we discretized the class session-level proportions into high,
medium, and low ordinal categories using the percentile splits per-
taining to each distribution (RF, BERT, actual proportions) for each
discourse variable. We considered two different splits: 33:67 and
15:85, which indicate the cutoff for the low and high categories,
respectively (i.e., proportions < .33 are categorized as low; >.67%
as high; median in-between). We chose these splits to examine the
tradeoff between model accuracy and ordinal category size (i.e., the
medium category contains 70% vs. 33% of instances for the 15:85
and 33:67 splits, respectively). Accuracy was computed as the diag-
onal agreement between the model assignments of category (low,
medium, high) with ground-truth alignments at the observational
level. The mean accuracy scores (and 95% CI) for each discourse
variable across 10 iterations are shown in Table 4.

We statistically analyzed the data using mixed effects logistic
regression models. Specifically, we regressed agreement (1 or 0)
on model (RF [reference group] or BERT) with iteration and class
session as (categorical) random intercepts. The resulting odds ratios

are shown in Table 4 where values greater than 1 indicate an advan-
tage of BERT vs. RF. We found that the BERT model consistently
yielded higher agreement than the RF model for the 33:67 split
with the exception of Authenticity, where the two models were tied.
The differences were less pronounced for the 15:85 split, where
BERT significantly outperformed RF for three of the discourse vari-
ables; the differences were marginally significant for two additional
variables. Overall, as could be expected, agreement was higher for
the 15:85 split (BERT average of 69%) than the 33:67 split (BERT
average of 52%) because the former is less discriminating (i.e., the
middle category contains 70% of the cases). This would explain why
BERTs advantages over RF were more pronounced for the more
discriminating 33:67 split.

4 DISCUSSION
4.1 Main Findings
We compared two machine learning approaches to model teacher
discourse features with an eye for providing automated feedback
for teacher learning. The first was a traditional open-vocabulary
approach using a Random Forest model to predict the presence of
key discourse variables in automatically transcribed teacher speech.
We then compared this approach to BERT, a state-of-the-art natural
language processing model which learns the contextual semantics
of words from domain-independent training data, upon which the
model is fine-tuned to the current domain of teacher talk.

Due to varying opportunities for data collection, our first task
was to investigate the data-accuracy tradeoff between these two
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Table 4: Percent Agreement [95% CI] of session-level ordinal feedback fir 15:85 and 33:67 splits across 10 iterations, along with
Odds Ratio values (reference is RF) for each split.

Percent Agreement [95% CI across iterations] Odds Ratio (OR)
15:85 Split 33:67 Split 15:85 Split 33:67

Split
Discourse Variable BERT RF BERT RF

Instructional Talk 0.691
[0.677-0.706]

0.645
[0.629-0.660]

0.511
[0.495-0.527]

0.394
[0.380-0.408]

1.67*** 2.58***

Questions 0.698
[0.673-0.724]

0.686
[0.670-0.701]

0.584
[0.559-0.609]

0.498
[0.484-0.513]

1.17 2.58***

Goal Specified 0.680
[0.664-0.697]

0.604
[0.591-0.617]

0.526
[0.514-0.538]

0.490
[0.473-0.507]

2.09*** 1.42**

ELA Terms 0.745
[0.722-0.767]

0.517
[0.512-0.533]

0.654
[0.636-0.673]

0.387
[0.369-0.405]

7.64*** 9.97***

Elaborated Evaluation 0.656
[0.635-0.677]

0.634
[0.621-0.647]

0.513
[0.497-0.528]

0.446
[0.434-0.457]

1.2611 1.74***

Authentic Questions 0.656
[0.636-0.675]

0.626
[0.614-0.638]

0.417
[0.373-0.462]

0.433
[0.403-0.463]

1.2011 0.91

High Cognitive Level 0.706
[0.692-0.719]

0.688
[0.679-0.698]

0.435
[0.427-0.443]

0.403
[0.390-0.416]

1.22 1.29*

Mean 0.690 0.629 0.520 0.436 - -

***p < .001; ** p < .01; * p < .05; 1 p < .057

models. Specifically, RQ1 asked whether one model would be a bet-
ter choice if the available training data were limited. We addressed
this question through a sampling experiment where we trained
each model using different sized partitions of our dataset. Perhaps
unsurprisingly, we found that for both models, larger datasets gen-
erally yielded better model performance. Whereas RF had some
advantageous for variables with low incidence rates when 25%-
50% of the data was included, BERT generally outperformed RF for
larger datasets. Compared to some NLP datasets which can contain
millions of training samples, our own dataset was relatively modest
at 16,977 samples. We hypothesize that BERT performance may
improve even more using a larger dataset than is currently available
to us.

Our next task was to consider how these two approaches com-
pared when presenting data at different granularities (RQ2). We first
considered utterance-level feedback, which identifies whether each
utterance contains a given discourse variable or not. This type of
feedback is the most specific form of feedback, which would allow
teachers to identify positive and negative examples of behaviors
they are trying to improve in the classroom. Compared to a tradi-
tional in-class observation by a peer or supervisor, utterance-level
feedback is similar to the observer pointing out specific moments
in class that the teacher excelled or needed improvement. We found
BERT clearly outperformed the RF model for five of the seven dis-
course variables; the differences were negligible for the other two
variables. Overall, BERT had a higher mean AUROC score of .841
compared to the RF model’s mean AUROC of .783, but both easily
outperformed chance (AUROC of 0.5). These results suggest that
both models might be capable of providing feedback at this level of
granularity. That said, it remains an important empirical question

of how accurate these models must be in order to provide exemplar-
based feedback to teachers because providing false positives as
examples of particular utterances will erode trust.

We next considered session-level proportion feedback, which
generates an overall score for each discourse variable in a given class
session. This type of feedback provides a class-level summary per
variable per class that teachers can directly focus on improving. By
pooling across tens or even hundreds of utterances, it can mitigate
utterance-level modeling errors. Additionally, teachers may bemore
capable of connecting this value with actionable goals for future
lessons (e.g., increase Questions from 25% to 30%). Similar to the
utterance-level feedback, we found the BERT clearly outperformed
RF for five out of the seven discourse variables. Overall, BERT had
an average correlation of .557 compared to .354 for RF, a larger
relative improvement (57%) than the utterance-level AUROC scores
(7.4% improvement).

Finally, we considered session-level ordinal feedback, which cat-
egorizes the scores from RQ2 into high, medium, or low categories
relative to the other teachers in the dataset. This feedback provides
another level of abstraction, which can hopefully protect against
inevitable errors in the automated analysis. Feedback at this level
may also serve as further motivation for teachers to improve since
it reports their score relative to other teachers. However, this cate-
gorical feedback may be harder for teachers to interpret to make
actionable insights because it is less clear what improvement looks
like (e.g., moving up from 40th percentile to 60th percentile is still
medium). We compared the two approaches using two different
splits between categories. We found that BERT had generally higher
agreement scores than RF, though the differences were larger and
more consistent for the more discriminating 33:67 split compared
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Figure 2: Mean (with 95% CI) utterance-level AUROCs of RF
(dashed line) and BERT (solid line) across sampling rates of
25%, 50%, 75%, and 100%. Sampling rates where one of the
models performed significantly better on 7 or more itera-
tions are marked with a * on the x-axis.

to the 15:85 split. For both models, agreement was higher using the
15:85 split, where more instances are considered medium, which is
perhaps less informative for teachers. Thus, BERT also appears to
be superior to RF for the coarsest level of feedback granularity.

4.2 Limitations and Future Work
Our study was limited in a few aspects. First, our dataset was rela-
tively homogeneous in that it contained data from only 16 teachers
from a similar geographic region. Hence, our models may not gen-
eralize well to new dialects or other sources of teacher variation.
More robust data collection is needed to further explore this pos-
sibility. Second, we only considered a limited number of machine
learning models in our study. Specifically, we built off of previously
verified methods and chose RF to exemplify the traditional open-
vocabulary approach; we used BERT to exemplify the deep transfer
learning approach to automated teacher feedback. As this area of
natural language processing research continues to rapidly evolve,
more models should be considered. Finally, our results apply specif-
ically to discourse in English Language Arts classrooms; future
work should similarly consider automated feedback methods in
other subject areas to provide a holistic assessment of its value for
teachers.
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(a)

(b)

(c)

Figure 3: Screenshots of preliminary teacher feedback (a)
using session-level ordinal feedback, (b) specific informa-
tion about the discourse feedback, and (c) a summary of all
lessons

4.3 Implications and Applications
Given the diverse and complex needs of individual teachers, there
is unlikely to be a one-size-fits-all approach to automated discourse
feedback. Each situation will vary in their desired outcomes and

ability to collect data. The type and amount of data available will
dictate which machine learning methods can be used for automated
analysis. The results of the current study suggest that the traditional
n-gram and RF approach might be a better choice when training
data is limited, but BERT is clearly preferred when training data
is abundant. Further given the rapid pace of advances in NLP and
deep learning, it is prudent to replicate these analyses with newer
models such as the Generative Pre-trained Transformer 3 (GPT-3,
[15]) model, which is achieving state-of-the-art results in many
NLP tasks.

Beyond modeling, future research is needed to understand the
most effective ways to provide teachers with feedback. For example,
the level of feedback should take into account the desired insights
teachers need in order to improve their practice. Pre-service teach-
ers, for instance, may find value in more detailed utterance-level
feedback while experienced teachers may use session-level ordinal
feedback to periodically review their classroom discourse. We also
need to investigate the potential impacts feedback systems may
have on teacher learning. Although there is some initial evidence
that teacher feedback can be used to improve student learning out-
comes [50], there is a dearth of studies that examine the longitudinal
effects of presenting these analytics to teachers. As discussed in [77],
it is important to move beyond modeling to better understand how
teachers are using the given information to make decisions about
their instructional practices and which approaches are effective.

Towards this end, our future work will study the impacts of
an automated feedback system proposed in [41] which provides
teachers with session-level ordinal feedback. Our initial designs are
illustrated in Figure 3, where we opted to provide teachers with
session-level ordinal feedback using the BERT models and 15:85
split (mean accuracy of about 70%), along with explanations that
clearly communicate model accuracy in the interest of transparency,
and a summary of the measures across class sessions (e.g., percent
of lessons classified as low for Instructional Talk). After evaluating
the feedback designs in user studies, we will investigate whether
and how teachers alter their behaviors based on the feedback and
identify the best way to pare feedback with other forms of coaching
or instructional support. There is also the foundational question
of whether this form of data-driven professional development can
lead to improvements in teacher discourse and whether this re-
sults in improved student achievement, which will entail further
development and evaluation.
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